
TDA Progress Report 42-123

N96- 16691

November 15, 1995

The Trellis Complexity of Convolutional Codes

R. J. McEliece

Communications Systems and Research Section

and

California Institute of Technology

Pasadena, California

W. Lin 1

It has long been known that convolutional codes have a natural, regular trellis

structure that facilitates the implementation of Viterbi's algorithm [30,10]. It has

gradually become apparent that linear block codes also/]ave a natural, though not

in general a regular, "minimal" trellis structure, which allows them to be decoded

with a Viterbi-1ike algorithn] [2,31,22,11,27,14,12,16,24,25,8,15]. In both cases, the

complexity of tile Viterbi decoding algorithm can be accurately estimated by the

number of trellis edges per encoded bit. It would, therefore, appear that we are

in a good position to make a fair comparison of the Viterbi decoding complex-

ity of block and convolutional codes. Unfortunately, however, this comparison is

somewhat muddled by the fact that some convolutional codes, tile punctured con-

volutional codes [4], are known to have trellis representations that are sig_Jificantly

less complex than the conventional trellis. In other words, ttle conventional trel]is

representation for a convolutional code may not be the minimal trellis representa-

tion. Thus, ironically, at present we seem to know more about the minimal trel]is

representation for block than for convolutional codes. In this article, we provide a

remedy, by developing a theory of minimal trellises for convolutional codes. (A sim-

ilar theory has recently been given by Sidorenko and Zyabloy [29].) This allows us

to make a direct performal_ce-complexity comparison for block and convolutional

codes. A by-product of our work is an algorithm for choosing, from among a11

generator matrices for a given convolutional code, what we call a trellis-minimal

generator matrix, from which the minimal trellis for the code can be directly con-

structed. Another by-product is that, in the new theory, punctured convolutional

codes no longer appear as a special class, but simply as high-rate convolutional

codes whose trellis complexity is unexpectedly small.

I. Introduction

Wc begill with the standard definition of a convolutional code [9,26], always assuming that the under-

lying feld is F = GF(2). An (n, k) convolutional code C is a k-dimensional subspace of F(D) '_, where

F(D) is the field of rational functions in the indeterminate D over the field F. The memory, or degree,

1Graduate student at the California Institute of Technology, Pasadena, California.

122

of C, is the smallest integer m such that C has an encoder requiring only m delay units. An (n, k) convo-
lutional code with memory m is said to be a (n, k, m) convolutional code. The free distance of C is the

minimum Hamming weight of any codeword in C. An (n, k, m) convolutional code with free distance d is
said to be an (n, k, m, d) code.

A minimal generator matrix G(D) for an (n, k, m) convolutional code C is a k x n matrix with polyno-

nfial entries, whose row space is C, such that the direct-form realization of an encoder for C based on G(D)
uses exactly m delay elements [9,26]. From a minimal generator matrix G(D), or rather from a physical

encoder built using G(D) as a blueprint, it is possible to construct a conventional trellis representation

for C. This trellis is, in principle, infinite, but it has a very regular structure, consisting (after a short

initial transient) of repeated copies of what we shall call the "trellis module" associated with G(D). The
trellis module consists of 2m initial states and 2m final states, with each initial state being connected by

a directed edge to exactly 2k final states. Thus, the trellis module has 2k+m edges. Each edge is labeled

with an n-bit binary vector, namely, the output produced by the encoder in response to the given state

transition. Thus, each edge has length (measured in edge labels) n, and so the total edge length of the

conventional trellis module is n2 k+m. Since each trellis module represents the encoder's response to k

input bits, we are led to define the conventional trellis complexity of the trellis module as

rt . 2m+k edge labels per encoded bit (1)
k

or edges per bit, for short. If the code C is decoded using Viterbi's maximum-likelihood algorithm on the
trellis [30,10], the work factor involved in updating the metrics and survivors at each trellis module is

proportional to the edge length of the trellis module, so that the trellis complexity as defined in Eq. (1)

is a measure of the effort per decoded bit required by Viterbi's algorithm. (For a more detailed discussion

of the complexity of Viterbi's algorithm on a trellis, see [25, Section 2].)

For example, consider the (3, 2, 2) convolutional code with minimal generator matrix given by

G I (D) = (I + DD I+D0 I+D1) (2)

This code has the largest possible free distance, viz., dfL-ee = 3, for any (3, 2, 2) code. A "direct-form"

encoder based on the generator matrix GI(D) is shown in Fig. 1. If the input pair is (Ul,U2) and the

state of the encoder is (s, t), then the output (Xl, x2, x3) is given by

X 1 ---- U 1 -]-Snt-t

X 2 _ U 1 -t- S

x3 = ul + u2 + t

(3)

and the "next state" is just the input pair (ul,u2). The conventional trellis module for the code with

minimal generator matrix GI(D) given in Eq. (2) is shown in Fig. 2. The three-bit edge label on the

edge from (s, t) to (u_, u2) is the triple (Xl, x2, x3) given in Eq. (3). The total edge length is 48, so that

the conventional trellis complexity corresponding to the matrix GI(D) is 48/2 = 24 edges per bit, as
predicted by Eq. (1).

But we can do substantially better than this, if we use the fact that this particular code is a punctured

convolutional code. We now briefly review the theory of punctured convolutional codes to see how
simplified trellises result.

123

Ul ,,, qj, •

U •

r-c-I

x 1 x 2 x 3

Fig. 1. A direct-form encoder based on the generator
matrix GI(D) in Eq. (2). The input is (u 1, u2), the
output is (xI , x2, x3), and the state of the encoder is
(s, t). (The boxes labeled s and t are unit delay
elements.)

O0_ O0

01 _ 01

10_10

11_11

Fig. 2. The conventional trellis module
for the code with minimal generator
matrix GI(D) given in Eq. (2).

If we begin with a parent (N, 1, m) convolutional code, and block it to depth k, i.e., group the input

bit stream into blocks of k bits each, the result is an (Nk, k, m) convolutional code. If we now delete,

or puncture, all but rt bits from each Nk-bit output block, the result is an (Tz, k, m) convolutional code. 2

This punctured code can be represented by a trellis whose trellis module is built from k copies of the

trellis modules from tile parent (N, 1,m) code, each of which has only 2 m+l edges, so that the total

number of edge labels on the trellis module is n • 2 'n+l, which means that the trellis complexity of an

('1_.,t_', m) punctured code is

n . 2m+1 edges per bit (4)
k

which is a factor of 2 k-1 smaller than the complexity of the conventional trellis given in Eq. (1). For

k = l, this is no improvement, but for larger values of k, the decoding complexity reduction afforded

2 In fact, the llrlelnory of the punctured code may be less than m, but for most interesting punctured codes, no memory

reduction will take place.

124

by puncturing becomes increasingly significant. And while the class of punctured convolutional codes

is considerably smaller than the class of unrestricted convolutional codes, nevertheless many punctured

convolutional codes with good performance properties are known [4,13,3,7], and punctured convolutional
codes, especially high-rate ones, are often preferred in practice.

For example, consider the (2, 1, 2, 5) convolutional code defined by the minimal generator matrix

G2(D)=(I+D+D 2 I+D 2) (5)

The conventional trellis module for this code is shown in Fig. 3. If we block this code into blocks of

size k = 2, we obtain a (4, 2, 2) convolutional code, still with dfree = 5, for which the conventional trellis

module is two copies of the trellis module shown in Fig. 3; see Fig. 4.

Now we can do the puncturing. Take the (4, 2, 2) code, as represented by the trellis module in Fig. 4,

and delete the second output bit on each of the edges in the second part of the module. The result is shown

in Fig. 5. This structure can be thought of as the trellis module for a (3, 2, 2) code; the corresponding

dfre_ turns out to be 3. According to Eq. (1), the conventional trellis complexity of a (3,2, 2) code is

3/2 - 2 4 = 24 edges per bit. But if we use instead the punctured trellis corresponding to the k = 2

blocked version of the parent (2, 1, 2) code, we find from Eq. (4), or Fig. 5, that the trellis complexity is

instead only 3/2 • 23 = 12 edges per bit. In fact, it can be shown that this punctured (3, 2, 2) code is the

same as the conventional code with generator matrix GI(D) given in Eq. (2). (Indeed, this example is

taken almost verbatim from [4], where it was used to illustrate the way puncturing can reduce decoding

complexity.)

O0 O0

01 01

10 _10
01

11 11

ooct °° oo ., oo

01 1_____ 0110 10

11 11

01_01

10_ 10

Fig. 3. The trellis module for
the (2,i,2) code with genera-

tor matrix G2(D)=(1 + D+D 2

1 +D 2); total edge length is
16, so the trellis complexity is
16 edges per bit.

Fig. 4. The trellis module for the (4,2,2)
code obtained from the code of Fig. 3
by blocking the inputs in blocks of size
2; total edge length is 32, so the trellis
complexity is 32/2 = 16 edges per bit,
the same as for the original code.

Fig. 5. The trellis module for the
(3,2,2) punctured code obtained from
the code of Fig. 4 by deleting every
fourth bit; total edge length is 16 + 8 =
24, so the trellis complexity is 24/2 =
12 edges per bit.

It seems mysterious that an ordinary-looking generator malrix u_.e'" Ul_L')"_n_ pluuuuc_J....... a _uu_.... _,,,o_u_"_

trellis complexity can be significantly reduced (if one knows that it is, in fact, a punctured code), whereas
for an almost identical code, say one defined by the generator matrix

I+D D I+D)D 1 1

no such reduction is apparently possible. In Section II, we will resolve this mystery by developing a

simple algorithm for constructing the mininmm possible trellis for any convolutional code. Our technique

will always find a simplified trellis for a punctured code, with complexity at least as small as that given

by Eq. (4), even if we are not told in advance that the code can be obtained by puncturing. But more

125

important, it will often result in considerable simplification of the trellis representation of a convolutional

code that is not a punctured code. We will illustrate this with worked examples in Sections II and III

and numerical tables in the Appendix.

II. Construction of Minimal Trellises

If G(D) is a minimal generator matrix for an (n, k, m) convolutional code C, then we can write G(D)
in the form

G(D) = Go + G1D +... + GLD L (6)

where Go,..., GL are k x n scalar matrices (i.e., matrices whose entries are from GF(2)), and L is the

maximum degree of any entry of G(D). If we concatenate the L + 1 matrices Go,. •., GL, we obtain a

k x (L + 1)n scalar matrix, which we denote by G:

G : (Go al ... GL) (7)

It is well known [23, Chapter 9] that the matrix G and its shifts can be used to build a scalar generator

matrix Gscalar for the code C (for simplicity of notation, we illustrate the case L = 2):

Gsc_|ar

GO G1 G2

Go G1 G2

Go G1 G2
Go G1 G2

(8)

The matrix in Eq. (8) is, except for the fact that it continues forever, the generator matrix for a binary

block code (with a very regular structure), and so the techniques that have been developed for finding

minimal trellises for block codes are useful for constructing trellis representations for convolutional codes.

Here we apply the techniques developed in [25, Section 7], which show how to construct a trellis directly

from any generator matrix for a given block code, and the minimal trellis if the generator is in minimal

span form, to construct a trellis for C based on the infinite scalar generator matrix Gsc_l_r.

The trellis module for the trellis associated with Gscalar corresponds to the (L+ 1)k x n matrix module,

0 = GL-1 (9)

Co

which repeatedly appears _ a vertical "slice" in Gs¢_lar. Using the techniques in [25, Section 7], it is e.asy

to show that the number of edges ill this trellis module is

n

edge count = E 2"_
j=l

(10)

126

where aj is the number of active entries in the jth column of the matrix module G. (An element is called

active if it belongs to the active span of one of the rows of G. We will elaborate on this below.) Our
object, then, is to find a generator matrix for which the edge count in the corresponding trellis module is
as small as possible.

To clarify these ideas, we consider the (3, 2, 1) code with (minimal) generator matrix

(110 *) Ill,G3(D)= I+D I+D

According to Eq. (1), the conventional trellis complexity for this code is 12 edges per bit. However, we

can do better. The scalar matrix G3 corresponding to Ga(D) is [cf. Eq. (7)]

(101000) (12)G3= 1 1 1 0 1 1

In Eq. (12), we have shown the active elements of each row, i.e., the entries from the first nonzero entry

to the last nonzero entry, in boldface. The span length of (i.e., the number of active entries in) the first
row is, therefore, three; and the span length of the second row is six. The matrix module corresponding
to G3 is [cf. Eq. (9)]

(00)G-_= 01
10

11

Thus, al = 3, a2 = 3, and a3 = 3, which by Eq. (10) means that the corresponding trellis module

has 23 + 23 + 23 = 24 edges. Since each trellis module represents two encoded bits, the resulting trellis

complexity is 24/2 = 12 edges per bit. Since we have already noted that the conventional trellis complexity

for this code is also 12 edges per bit, the trellis corresponding to Ga(D) is not better than (in fact, it is

isomorphic to) the conventional trellis. To do better, we need to find a generator matrix for the code for

which _i 2a_ is less than 24. Using the results of [25, Section 6], it is possible to show that minimizing

i 2a is equivalent to minimizing _ ai, i.e., the total span length of the corresponding G, and so we

shall look for generator matrices for which the span of G i.q reduced.

Note that if we add the first row of G3(D) to the second row, the resulting generator matrix, which is
still minimal, is

/I 0 1\

The scalar matrix G_ corresponding to G_3(D) is [cf. Eq. (7)]

G_3= (1001001 0 0 1 _) (13)

The span length of the first row of G_3(D) is three, and the span length of the second row is five, and so

the total span length is eight, one less than that of Ga(D). The matrix module corresponding to G_3 is
[cf. Eq. (9)]

127

0 0 0 /
(;'-_;=3 0 1 1

1 0 1

0 1 0

Here a 1 = 2, a2 = 3, and a3 = 3, and so by Eq. (10) the corresponding trellis module has 22 +2 3 +2 3 = 20

edges, so that tile resulting trellis complexity is 20/2 = 10 edges per bit. Tile trellis module itself,

constructed using the technique described in [25, Section 7] is shown in Fig. 6.

0 0

0,. _0 _ _,_00-'%--_ 0.-
". -"-o. _ "o ./* z/z

"o, ",<. "-o-/ /,

"C. /
_',, I I

" .//1

Fig. 6. The trellis module for the (3,2,1) code with generator matrix
G_ (D). (Solid edges represent "0" code bits, and dashed edges

represent "1" code bits. The labels on the vertices correspond to the
information bits.)

But we can do still better. If we multiply the first row of G'a(D) by D and add it to tile second row,

the resulting generator matrix, which is still minimal, is

(,G'_(D) = D l + O

The scalar matrix G_' corresponding to C'a'(D) is [cf. Eq. (7)]

OWa,= (10 01 O1 01 10 0)0 (14)

The span length of G'a'(D) is seven, one less than that of Ca(D). The matrix module corresponding to

c._' is [cf.Eq. (9)]

a---;3,= 1 1
1 o
o 1

Here a l = 2, a2 = 3, and aa = 2, and so by Eq. (10), the corresponding trellis module has 22+ 23+ 22 = 16

edges, so that the resulting trellis complexity is 16/2 = 8 edges per bit. The trellis module itself, again

constructed using the techniques described in [25, Section 7] is shown in Fig. 7.

128

0 0
O. _ ... 0-._ .._0

"_ "" "" -.... 1 "" _" "_"" 1

1 0

.s

Fig. 7. The trellis module for the (3,2,1) code with generator matrix
G _'(D). This is the minimal trellis module for this code.

Furthermore, it is easy to see that there is no generator matrix for this code with span length less than

seven, so that the trellis module shown in Fig. 7 yields the minimal trellis for the code. Alternatively, we

examine the scalar generator matrix for the code corresponding to G_' [cf. Eq. (8)]:

(_scMar =

-!oiooo
OIOITO

loT

0 1 0

0 0 0

1 T 0

0 1 0 T 0 0 0

0 1 0 1 T 0

(15)

In Eq. (15), we see that Gscalar has the property that no column contains more than one underlined entry,

the leftmost nonzero entry in its row (L), or more than one overlined entry, the rightmost nonzero entry

in its row (R). Thus, Gscala, has the LR property, and so, if it were a finite rnatriz, it would produce

the minimal trellis for the code [25, See. 6]. To circumvent the problem that Gscalar is infinite, we can
define the Mth truncation of the code C, denoted by C[MI, as the ((M + L)n, Mk) block code obtained

by taking only the first Mk rows of Gscalar, i.e., the code with Mk x (M + L)n generator matrix

G [_]
scalar =

-!oiooo
OlOITO

loT

OlO

0 0 0

1 T 0

i 0 T 0

0 1 0 I

0 0

T o

(16)

Plainly, i[Gsc,_l_,- has the LR property, so does tJscalar ,• " all . ilium, /UI/UW_ _./UIII Ull_,_ _t_C_IIUObIU

re[all produces the minimal trellis for C [M], for all M,theory of trellises for block codes that the matrix _scalar

and so we can safely call the infinite trellis, built from trellis modules corresponding to G, the minimal

trellis for the code. (Note that, in this example, the ratio of the conventional trellis complexity to the

minimal trellis complexity is 12/8 = 3/2. If this code were punctured, then according to Eqs. (1) and
(4), the ratio would be at least 2. Thus, we conclude that the code with generator matrix G3(D) as given

in gq. (11) is not a punctured code, which shows that the theory of minimal trellises for convolutional

codes goes beyond merely _"explaining, punctured codes.)

The preceding argument, though it was presented in terms of a specific example, is entirely general. It

shows that a basic generator matrix G(D) produces a minimal trellis if and only if G(D) has the property

that the span length of the corresponding G cannot be reduced by an operation of the form

129

gi(D) _ g,(D) + De gj(D)

where gi(D) is the ith row of G(D) and f is an integer in the range 0 < _ < L. We shall call a generator

matrix with this property a trellis-minimal generator matrix for C. A trellis-minimal generator matrix
must be minimal, but the converse need not be true, as the example of this section shows. Furthermore,

it call be shown that the set of trellis-minimal generator matrices for a given code C coincides with the

set of generator matrices for which the span length of the corresponding G is a minimum. In the next

section, we will give two more examples of minimal trellises.

III. Two More Examples

Our first example is for tile code whose generator matrix is given ill Eq. (2).

decomposition [cf. Eq. (6)] is

Tile corresponding

(1 1 1) (1 1 01) DGI(D)= 0 0 1 + 1 0

The scalar matrix G is, thus,

1 1 1 1 1 0)GI= 0 0 1 1 0 1

and tile matrix module 0 from Eq. (9) is then

1 1 0)
01 = 1 0 1 (17)

1 1 1

0 0 1

Since t-here are three active entries in each column of 0, it follows from Eq. (10) that tile edge count for

the trellis module is 23 + 23 + 23 = 24, so that the trellis complexity for this trellis module is 24/2 = 12

edges per bit, the same as given by Eq. (4) for the punctured trellis. To actually construct the trellis

module, we can use the techniques of [25, Section 7], and the result is shown in Fig. 8. Finally, we note

that the G_cah,_ corresponding to the matrix G1 of Eq. (17) is [cf. Eq. (8)]

1 1 1 1]- 0

0 0 I 1 0

1 1 1 1 T 0

0 0 1 1 0 T

1 1 1

0 0 1

1 1 0

1 0 T

which has the LR property, and so GI(D) is trellis-minimal. (This code is tile first code listed in Table 2
in the Appendix.)

130

o o

"" "--.. I / "" _ I

Fig. 8. The trellis module for the (3,2,2) code with generator matrix
GI(D). This module is isomorphic to the one in Fig. 5.

As our second example, we consider a partial-unit-memory code, taken from [20,1]. It is an (8, 4, 3)

code with dfree = 8 and with minimal generator matrix (as taken from [1])

11111111 '_ [00000000)

11101000 | / 11011000

G(D) = 10110100] + / 10101100 D

10011010/ \10010110

(18)

The conventional trellis complexity for this code is, by Eq. (1), 8/4.2 r = 256 edges per bit. We can

reduce this number to 120, as follows. First, we concatenate tile two matrices in Eq. (18), obtaining the

following 4 x 16 scalar matrix G:

(1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 00_

(_= _! ! ! 0 ! 0 0 0 1 1 0 1 1 0 0 00)
1 0 1 1 0 1 0 0 1 0 1 0 1 1 0

1 0 0 1 1 0 1 0 1 0 0 1 0 1 1

Next, using the techniques developed in [25, Section 6], we perform a series of elementary row operations

on G, transforming it to the minimal span, or trellis oriented form, G':

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0\

0 0 0 1 0 I 1 1 1 I 0 i I 0 0

0 1 0 0 1 0 i I I 0 1 0 1 1 0

0 0 1 0 1 1 1 0 0 0 1 1 1 0 1

(19)

The matrix module G defined in Eq. (9) is, thus,

131

d z

/0 0 0 0 0 0 0 0

1 1 0 1 1 0 0 0

1 0 1 0 1 1 0 0

0 0 1 1 1 0 1 0

1 1 1 1 1 1 1 1

0 0 0 1 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 1 OJ

an(l so by Eq. (10) the total edge length of the trellis module is 2 4 + 2 5 q- 2 6 q- 2 7 q- 2 7 q- 2 6 -t-25 + 2 4 = 480.
Since each trellis module represents four encoded bits, it follows that the trellis COml)lexity is 480/4 = 120

edges per bit, compared to the conventiomfl trellis complexity, cited above, of 256 edges per bit.

Tim matrix Gscalar corresponding to the matrix G' in Eq. (19) is easily seen to have the LR property,

and so the generator matrix [cf. Eq. (19)]

(1111111i)(i°°°°°°°/G'(D)= 0 0 0 1 0 1 1 1 0 1 1 0 0 0 D
0 1 0 0 1 0 1 + 0 1 0 1 1 0 0

0 0 1 0 1 1 1 0 1 1 1 0 1 0

is trellis-minimal. However, the trellis complexity can be reduced still further, if we allow column per-

mutations of the original generator matrix G(D) in Eq. (18). Indeed, by comI)uter search, we have fi)und

that one minimal complexity cohmm permutation for this particular code is the permutation (01243567),

which results in the generator matrix [of. Eq. (18)]

11111111

11110000 |
G(D)= 10101100]

10011010/

[00000000 '_

/ 11011000 |
+ _ 10110100]

\ 1OO0111O/

D (20)

Then, after putting the minimal generator lnatrix of Eq. (20) into trellis-minimal form, it becomes

11111111\ /'00000000'_
00001111| / 11111000|

(7(D) = 01111111] + _11111100] D (21)
00111111/ \11111110/

The trellis complexity of the generator matrix in Eq. (21) turns out to be 104 edges per encoded bit.

(This code is the seventh code listed in Table 6 in the Appendix.) The minimal trellis complexity of unit

memory and partial unit memory eonvolutional codes has also been studied in [6] and [32].

IV. LTC Versus ACG

In this section, we will attempt to compare the trellis complexity of a number of codes to their perfor-

mance. _lb do tiffs, we define the logarithmic trellis complexity (LTC) of a code, block or convohltional,

as the base-2 logarithm of the minimal trellis complexity (edges per encoded bit) and the asymptotic

coding gain (ACG) as the code's rate times its mininmm (or fi'ee) distance. An empirk:al study, based on

existing tables of convolutional codes (e.g., the tables in [19,28,20,5,7]), reveals the interesting fact that

LTC / ACG lies between 1.5 and 2.0 for most "good" convolutional codes. For example, for the (3, 2, 2, 3)

132

code discussed in Section III, the ratio is 1.79, and for the (8, 4, 3, 8) code, it is 1.68. By comparison, for

the "NASA standard" (2, 1, 6, 10) convolutional code, for which, as for all (n, 1, rn) convolutional codes,

the minimal trellis complexity is given by the formula of Eq. (1), the ratio is 1.60. In the Appendix, we

list the (ACG, LTC) pairs for a large number of convolutional codes and a few block codes. In Fig. 9,

we show a scatter plot of these pairs. It is interesting to note how close most of these pairs are to the

line of slope 2. This experimental fact may be related to a recent theorem of Lafourcade and Vardy [18],
which implies that for any sequence of block codes with a fixed rate R > 0 and fixed value of d/n > O, as

ft ---+ OO,

LTC

liminf _-C-_ _> 2 (22)

In any case, we have been able to show that for all codes, the ratio LTC/ACG must be strictly greater

than 1. (This result is similar to Theorem 3 in [17].)

o

.M

L I I I I I I

30 / o CONVOLUTIONAL CODES y

/ x BLOCK CODES .,_

o°
o o o

15 £ o °°

'i
L,-_ I I I I I I
2 4 6 8 10 12 14

ACG

Fig. 9. A scatter plot of the pairs (ACG, LTC) for the codes listed
in the Appendix.

V. Conclusion and Open Problems

In this article, we have shown that every convolutional code has a unique minimal trellis representation,

which is in many cases considerably simpler than the conventional trellis for the code. We have also

presented a simple technique for actually constructing the minimal trellis for any convolutional code,

and we have numerically computed the trellis complexity for many convolutional codes. In principle, the

theory of minimal trellises for convolutional codes can be deduced fl'om the general Forney-Trott theory

[12], but we believe the observation that the Viterbi decoding complexity of many convolutional codes,

including many nonpunctured codes, can thereby be reduced systematically is new, as are the details of

the algorithms for producing the minimal trellises.

We close with a list of research problems that suggest themselves.

133

(1) A given convolutional code will, in general, have many different minimal generator ma-

trices [21], but as we saw in Section II, not all minimal generator matrices are trellis

minimal. What can be said about the class of trellis minimal generator matrices?

(2) A theoretical explanation of the experimental observation that most of the codes shown

in Fig. 9 lie near the line of slope 2 would be welcome.

(3) The design and implementation of Viterbi's algorithm on conventional trellises is well

understood. Since the techniques described here lead to greatly reduced trellis complex-

ity, it would be worthwhile to make a careful study of how best to implement Viterbi's

algorithm on minimal trellises.

(4) From our current viewpoint, punctured convolutional codes are just codes whose trellis

module has fewer edges than would normally be expected. Indeed, it is easy to prove

that the minimal trellis complexity of any punctured convolutional code is at least as

small as the punctured trellis complexity given in Eq. (4). This is because in the scalar

matrix G for a punctured code, certain entries are guaranteed to be zero. For example,

for a (4, 3, 3) punctured code, the matrix G has the template structure

(xxxxx0!)C,= Oxzzzx
0 0 x x x x

where the x's can be arbitrary (actually, there are restrictions oll the x's that depend in
detail on how the code is constructed), but the eight zero positions must be respected.

Any (4, 3, 3) convolutional code with such a template structure will have trellis complexity

at most 4/3.24 = 211/3. An obvious question is whether other low complexity templates

support good convolutional codes.

(_) In our computer-aided search for the "best" column permutation of the (8, 4, 3, 8) code,

we found that each of the 8! = 40,326 possible column permutations had minimal trellis

complexity of either 120 or 104. This strongly suggests an equivalence among permu-

tations that, if understood theoretically, could make it much simpler to find the best

column permutation.

Finally, we remark that when the bulk of this article was written, we were not aware of tile important

earlier work of Sidorenko and Zyablov [29], which,deals explicitly with the minimal trellis for a convo-
lutional code, and we wish to acknowledge their priority. Their work, like ours, develops the theory of

minimal trellises for convolutional codes from the corresponding theory for block codes. However, their
trellis construction is based on the parity-check matrix of the code rather than the generator matrix,

and their emphasis is quite different. One advantage of the Sidorenko-Zyablov approach is that it leads

to the following upper bound on the number of nodes at depth i in the minimal trellis for a (n, k, m)

convolutional code [29, Theorem 1]:

Nz __ 2 m+min(k'n-k)

It is not easy to derive this bound using our methods. On the other hand, the present article contains a

number of things not present in [29], among them being

134

(1) The observation that the minimal trellis for a punctured convolutional code is at least

as simple as the punctured trellis.

(2) The concept of a trellis-minimal generator matrix for a convolutional code, and an algo-
rithm for computing one.

(3) The ACG versus LTC comparison for block and convolutional codes.

References

[1] K. Abdel-Ghaffar, R. J. McEliece, and G. Solomon, "Some Partial Unit Memory

Convolutional Codes," The Telecommunications and Data Acquisition Progress
Report 42-107, July September 1991, Jet Propulsion Laboratory, Pasadena, Cal-

ifornia, pp. 57-72, November 15, 1991. Also see Proc. 1991 International Sym-
posium on Information Theory, Budapest, p. 196, June 1991.

[2] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal Decoding of Linear

Codes for Minimizing Symbol Error Rate," IEEE Trans. Inform. Theory, vol.
IT-20, pp. 284-287, March 1974.

[3] G. B_gin and D. Haccoun, "High-Rate Punctured Convolutional Codes: Struc-

ture Properties and Construction Technique," IEEE Trans. Comm., vol.
COM-37, pp. 1381-1385, December 1989.

[4] J. B. Cain, G. C. Clark, and J. M. Geist, "Punctured Convolutional Codes of

irate (n - 1)In and Simplified Maximum Likelihood Decoding," IEEE Trans.

Inform. Theory, vol. IT-25, pp. 97-100, January 1979.

[5] D. G. Daut, J. W. Modestino, and L. D. Wismer, "New Short Constraint Length

Convolutional Code Construction for Selected Rational Rates," IEEE Trans.

Inform. Theory, vol. IT-28, pp. 794-800, September 1982.

[ujU Jgeuunalr"..... altu'U. ool_l°......,"'_-,J.,a_"r_":.....r:l._l;t.^_A_n;_

ory Codes," Proc. 6th Swedish-Russian International Workshop on Information
Theory, pp. 184-188, August 1993•

[7] A. Dholakia, Introduction to Convolutional Codes with Applications, Boston:
Kluwer Academic Publishers, 1994.

[8] S. Dolinar, L. Ekroot, A. Kiely, R. McEliece, and W. Lin, "The Permutation Trel-

lis Complexity of Linear Block Codes," Proc. 32nd Annual Allerton Conference

on Communication, Control, and Computing, Allerton Park, Illinois, pp. 60-74,
September 1994.

[9] G. D. Forney Jr., "Convolutional Codes I: Algebraic Structure," IEEE Trans.

Inform. Theory, vol. IT-16, pp. 268-278, November 1970.

[10] G. D. Forney, Jr., "The Viterbi Algorithm," Proc. IEEE, vol. 61, pp. 268-276,
March 1973.

[11] G. D. Forney, Jr., "Coset Codes--Part II: Binary Lattices and Related Codes,"

IEEE Trans. Inform. Theory, vol. IT-34, pp. 1152-1187, September 1988.

135

136

[12] G. D. Forney, Jr., and M. D. Trott, "The Dynamics of Group Codes: State
Spaces, Trellis Diagrams, and Canonical Encoders," IEEE Trans. Inform. The-

ory, vol. IT-39, pp. 1491 1513, September 1993.

[13] D. Haccoun and G. B6gin, "High-Rate Punctured Convolutional Codes for
Viterbi and Sequential Decoding," IEEE Trans. Comm., vol. COM-37, pp. 1113-

1125, November 1989.

[14] B. Honary, G. Markarian, and M. Darnell, "Trellis Decoding for Block Codes,"
PT"oc. 3rd IEE Int. Syrup. Comm. Theory Appl., Ambleside, United Kingdom,

pp. 79 93, July 1993.

[15] A. Kiely, S. Dolinar, R. McEliece, L. Ekroot, and W. Lin, "Trellis Decoding

Complexity of Linear Block Codes," to appear in IEEE Trans. Inform. Theory,
vol. IT-42, November 1996.

[16] F. R. Kschischang and V. Sorokine, "On the Trellis Structure of Block Codes,"
IEEE Trans. Inform.. Theory, vol. IT-41, November 1995, ill press.

[17] A. Lafourcade and A. Vardy, "Asymptotically Good Codes Have Infinite Trellis
Complexity," IEEE Trans. InfoTvn. Theory, vol. IT-41, pp. 555-559, March 1995.

[18] A. Lafourcade and A. Vardy, "Lower Bounds on Trellis Complexity of Block
Codes,"IEEE Trans. Inform. Theory, vol. IT-41, November 1995, in press.

[19] K. Larsen, "Short Convolutional Codes With Maximal Free Distance for Rates

1/2, 1/3, and 1/4," IEEE Trans. Inform. Theory, vol. IT-19, pp. 371-372, May
1973.

[20] G. S. Lauer, "Some Optimal Partial-Unit-Memory Codes," IEEE Trans. Inform.

Theory, vol. IT-25, pp. 540-547, March 1979.

[21] K. Lumbard and R. J. McEliece, "Counting Minimal Generator Matrices," Proc.

199_ IEEE Inter. Syrup. Inform,. Theory, Trondheim, Norway, p. 18, June 1994.

[22] J. L. Massey, "Foundations and Methods of Channel Coding," Proc. Int. Conf.

Inform. Theory and Systems, NTG-Fachberichte, vol. 65, pp. 148-157, 1978.

[23] R. J. McEliece, The Theory of b_formation and Coding, Reading, Massachusetts:

Addison-Wesley, 1977.

[24] R. J. McEliece, "The Viterbi Decoding Complexity of Linear Block Codes," Proc.

199_ IEEE b_ter. Syrup. Inform. Theory, Trondheim, Norway, p. 341, June 1994.

[251 R. J. McEliece, "On the BCJR Trellis," to appear in IEEE Trans. btfoTvn. The-

ory., vol. IT-42, 1996.

[26] R. J. McEliece, "The Algebraic Theory of Convolutional Codes," to appear as a

chapter in the Handbook of Coding Theory, edited by R. A. Brualdi, W. C. Huff-

man, and V. Pless, Amsterdam: Elsinore Science Publishers, 1996.

[27] D. J. Muder, "Minimal Trellises for Block Codes," IEEE Trans. btforrn. Theory,

vol. IT-34, Pl). 1049 1(153, September 1988.

[281 E. Paaske, "Short Binary Convolutional Codes With Maximal Free Distance,"

IEEE Trans. b_for'm.. Theory, wfl. IT-20, pp. 683-688, September 1974.

[29] V. Sidorenko and V. Zyablov, "Decoding of Convolutional Codes Using a Syn-
drome Trellis," IEEE 7'tans. b_form. Theory, vol. IT-4O, pp. 1663-1666, Septem-
ber 1994.

[30] A. J. Viterbi, "Error Bounds for Convolutional Codes and an Asymptotically Op-

timum Decoding Algorithm," IEEE Trans. Inform. Theory, vol. IT-13, pp. 260

269, April 1967.

[31] J. K. Wolf, "Efficient Maximum Likelihood Decoding of Linear Block Codes,"

IEEE Trans. Inform. Theory, vol. IT-24, pp. 76-80, January 1978.

[32] V. Zyablov and V. Sidorenko, "Soft Decision Maximum Likelihood Decoding of

Partial Unit Memory Codes," Problems of Information Transmission, vol. 28,

no. 1, pp. 18-22, July 1992.

Appendix

Tables of LTC Versus ACG

In this appendix, we list the ACG and the LTC for a large number of "good" convolutional codes and

a few block codes. A scatter plot of these (ACG, LTC) pairs appears as Fig. 9 in Section IV.

Table 1. Best (2,1,m) codes. _

Code LTC ACG LTC-ACG
ratio

(2,1,2,5) 4 2.5 1.60

(2,1,3,6) 5 3 1.67

(2,1,4,7) 6 3.5 1.71

(2,1,5,8) 7 4 1.75

(2,i,6,10) 8 5 1.60

(2,1,8,12) 10 6 1.67

(2,1,10,14) 12 7 1.71

(2,1,11,15) 13 7.5 1.73

(2,1,12,16) 14 8 1.75

(2,I,14,18) 16 9 1.78

(2,1,15,19) 17 9.5 1.79

(2,1,16,20) 18 10 1.80

(2,1,18,22) 20 11 1.82

(2,1,21,24) 23 12 l.u2

(2,1,23,26) 25 13 1.92

(2,1,25,27) 27 13.5 2.00

(2,1,27,28) 29 14 2.07

(2,1,30,30) 32 15 2.13

a From pp. 85-88 in [7].

137

Table 2. Best (3,2,m) codesP

Code LTC ACG LTC-ACG
ratio

(3,2,2,3) 3.58 2.00 1.79

(3,2,3,4) 5.00 2.67 1.87

(3,2,4,5) 6.00 3.33 1.80

(3,2,5,6) 7.00 4.00 1.75

(3,2,6,7) 8.00 4.67 1.71

(3,2,7,8) 9.00 5.33 1.69

(3,2,8,8) 10.00 5.33 1.88

(3,2,9,9) 11.00 6.00 1.83

(3,2,10,10) 12.00 6.67 1.80

a From p. 90 in [7].

Table 3. Best (4,3,m) codesP

Code LTC ACG LTC ACG
ratio

(4,3,3,4) 5.00 3.00 1.67

(4,3,5,5) 7.00 3.75 1.87

(4,3,6,6) 8.00 4.50 1.78

(4,3,8,7) 10.00 5.25 1.90

(4,3,9,8) 11.00 6.00 1.83

From p. 90 in [7].

Table 4. Best (3,1,m) codes. _

Code LTC ACG LTC-ACG
ratio

(3,1,2,8) 4.58 2.67 1.72

(3,1,3,10) 5.58 3.33 1.68

(3,1,4,12) 6.58 4.00 1.64

(3,1,5,13) 7.58 4.33 1.75

(3,1,6,15) 8.58 5.00 1.72

(3,1,7,16) 9.58 5.33 1.80

(3,1,8,18) 10.58 6.00 1.76

(3,1,9,20) 11.58 6.67 1.74

(3,1,10,22) 12.58 7.33 1.72

(3,1,11,24) 13.58 8.00 1.70

(3, I, 12,24) 14.58 8.00 1.82

(3,1,13,26) 15.58 8.67 1.80

From p. 89 in [7].

138

Table5.Best(4,1,m)codes._

Code LTC ACG LTC-ACG
ratio

(4,1,2,10) 5.00 2.50 2.00

(4,1,3,13) 6.00 3.25 1.85

(4,1,4,16) 7.00 4.00 1.75

(4,1,5,18) 8.00 4.50 1.78

(4,1,6,20) 9.00 5.00 1.80

(4,1,7,22) 10.00 5.50 1.82

(4,1,8,24 11.00 6.00 1.83

(4,1,9,27) 12.00 6.75 1.78

(4,1,10,29) 13.00 7.25 1.79

(4,1,11,32) 14.00 8.00 1.75

(4,1,12,33) 15.00 8.25 1.82

(4,1,13,36) 16.00 9.00 1.78

aFrom p. 89 in [7].

Table 6. Some block codes and partial unit memory

convolutional codes.

Code LTC ACG LTC-ACG
rat io

[8,4,4] 3.46 2.00 1.73

Self-dual code

[24,12,8] 8.22 4.00 2.06

Golay code

[32,16,8] 8.64 4.00 2.16
BCH a code

[48,24,12] 15.13 6.00 2.52

Self-dual code

[n, n - 1, 2] 2.00 2(n- 1) ,n n_l

Parity-check code

In, 1, n] 1 + log 2 n 1 1 + log 2 n

Repetition code

(8,4,3,8) 6.70 4.00 1.68

PUM b code

(24,12,7,12) 15.58 6.00 2.60

PUM code

(24,12,10,16) 18.58 8.00 2.32
PUM code

Bose-Chaudhuri-Hocquenghem.

b Partial unit memory.

139

